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Abstract. Recent innovations in computer architecture, system architecture, and program-
ming models require application codes from a variety of areas to be updated to fully exploit
the technological potential on cutting-edge HPC systems, for example, systems with hardware
support for the Partitioned Global Address Space (PGAS) model. We explore new parallel
language constructs based on the PGAS model using the communication kernel of a real-world
magnetic fusion simulation code. Novel single- and multithreaded communication algorithms
using a one-sided messaging paradigm based on Coarrays are first evaluated in a benchmark
suite and then integrated into the fusion code. Experiments on up to 131K processors on a Cray
XE platform show that the performance of the heavily optimized original MPI communication
kernel can be significantly improved by our new PGAS communication algorithms.

1. Introduction
The Gyrokinetic Tokamak Simulation (GTS [4]) code—a global 3D particle-in-cell (PIC) code
with MPI and OpenMP support—has been selected among many of today’s fusion codes for the
petascale postdoc program. GTS is a general geometry PIC code developed to study plasma
microturbulence in toroidal, magnetic confinement devices called tokamaks. Microturbulence is
a complex, nonlinear phenomenon that is believed to play a key role in the confinement of energy
and particles in fusion plasmas [2], so understanding its characteristics is of utmost importance
for the development of practical fusion energy.

Because of one of the levels implemented for parallelism in GTS, particles can move from one
toroidal domain to another while they travel around the torus (the typical domain of a magnetic
fusion reactor). This shift phase is the one we have studied the most so far in GTS since it
represents the most communication-intense routine in GTS and will gain in importance when
scaling GTS to petascale or even exascale supercomputers.

2. Particle Shift Algorithms in GTS
At each time step, about 10% of the particles inside of a toroidal domain are communicated
to adjacent toroidal neighbors, which translates to about 100 GB of data having to be
communicated each time step shift is called in a 1-billion particle simulation run.
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Figure 1. Weak scaling studies of a Coarray shifter and two MPI particle shifter algorithms
with (a) no and (b) full (6 OpenMP threads per NUMA node) OpenMP support .

The original MPI particle shift algorithm, which implemented a nearest-neighbor
communication pattern using MPI Send Recv functionalities, has been extensively researched
in the past. This research resulted in a set of optimized, single-threaded MPI algorithms
for shift containing, among others, nonblocking MPI send and receive operations, various
MPI communication techniques (e.g., buffered send), and the usage of MPI data types (e.g.,
MPI Type create indexed block) to eliminate particle packing overheads. In addition—since
GTS supports a hybrid MPI/OpenMP programming model—multithreaded MPI algorithms
exploiting shared memory work-sharing constructs and novel communication and computation
overlapping techniques using the newly introduced OpenMP tasks [3] have been developed over
the years. However, all optimized MPI algorithms share the large bulk data transfers to exchange
moving particles according to the rule that performance is optimized by sending fewer and larger
messages.

This is in contrast to the strategy used for our new Coarray shift algorithms, which
exploit the one-sided nature of the PGAS programming model. We implemented novel
Coarray algorithms—that cannot be expressed in a two-sided message passing scheme like
MPI-1—using more, but smaller messages with lower startup and completion costs. Building
upon such lightweight one-sided communication techniques, we can efficiently spread out the
communication over a longer period of time, resulting in a reduction of bandwidth requirements
and a more sustained communication and computation overlap. Moreover, the expression of
the one-sided messaging semantics as language constructs improves the legibility of the code
and allows the compiler to apply communication optimizations. Hardware support for PGAS
constructs and one-sided messaging, such as that provided by NERSC’s recent Cray XE6 Gemini
interconnect, is essential to realize the performance potential of these new approaches. We
also developed novel hybrid PGAS/OpenMP communication algorithms, which distribute the
computational as well as the communication work load among OpenMP threads based on an
advanced programming model that extends the classical hybrid distributed/shared memory
model as used in the MPI algorithms. We note that we replace only the existing MPI
communication kernel by a new algorithm using Coarrays and leave the rest of the physics
simulation code unchanged, which still has MPI function calls in it.

Figure 1 presents the wall-clock runtime of a Coarray shifter implementation (CAF-atom)
and of two MPI shift algorithms (MPI-ms, MPI-ss), running with no OpenMP support
(Figure 1(a)) and full (i.e., 6 OpenMP threads per instance, on each NUMA node) OpenMP
support (Figure 1(b)) on the Cray XE6 at NERSC. The algorithms are evaluated in a specially
designed benchmark suite simulating GTS production run settings. Data for the single-threaded
experiments was collected for concurrencies ranging from 1,600 up to 131,072 processor cores.
For the multithreaded runs we run on 9,600 up to 126,720 processor cores on the Cray XE6



machine. All runtime numbers presented in Figure 1 are based on weak scaling experiments.
We can observe in both tests—for the singlethreaded and the multithreaded runs of the
shifter benchmark suite—a steady increase in runtime for shifting particles in a torus with
increasing concurrencies, whereas one would expect a flat line along the x-axis for weak scaling
experiments. This motivates optimizing this communication-intense GTS step to enable higher
concurrencies as planned to model future nuclear fusion devices. Figure 1 shows that in both
cases (OpenMP turned on or off) the Coarray implementation substantially outperforms the
best MPI implementations, despite the extensive work in profiling and optimization of the
communication layer of the GTS code.

Integration of the best Coarray and MPI shifter implementations to the GTS production
code confirms that the standalone shifter communication benchmark correctly predicts the
performance benefits of the particle shift phase for the full application code. This result proves
that sending more frequent smaller messages enables the Coarray approach to outperform the
message-passing implementations because of the enhanced communication and computation
overlap as well as the better network bandwidth utilization. Employing a similar strategy
of transmitting smaller more frequent messages is not practical in MPI and would require
significant efforts in MPI-2, which would obscure semantics and science because of its semantic
limitations [1].
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